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Legacy encryption systems depend on sharing a key (public or private) among the peers involved in exchang-
ing an encrypted message. However, this approach poses privacy concerns. The users or service providers
with the key have exclusive rights on the data. Especially with popular cloud services, control over the pri-
vacy of the sensitive data is lost. Even when the keys are not shared, the encrypted material is shared with a
third party that does not necessarily need to access the content. Moreover, untrusted servers, providers, and
cloud operators can keep identifying elements of users long after users end the relationship with the services.
Indeed, Homomorphic Encryption (HE), a special kind of encryption scheme, can address these concerns as
it allows any third party to operate on the encrypted data without decrypting it in advance. Although this
extremely useful feature of the HE scheme has been known for over 30 years, the first plausible and achiev-
able Fully Homomorphic Encryption (FHE) scheme, which allows any computable function to perform on the
encrypted data, was introduced by Craig Gentry in 2009. Even though this was a major achievement, differ-
ent implementations so far demonstrated that FHE still needs to be improved significantly to be practical on
every platform. Therefore, this survey focuses on HE and FHE schemes. First, we present the basics of HE
and the details of the well-known Partially Homomorphic Encryption (PHE) and Somewhat Homomorphic
Encryption (SWHE), which are important pillars for achieving FHE. Then, the main FHE families, which have
become the base for the other follow-up FHE schemes, are presented. Furthermore, the implementations and
recent improvements in Gentry-type FHE schemes are also surveyed. Finally, further research directions are
discussed. This survey is intended to give a clear knowledge and foundation to researchers and practitioners
interested in knowing, applying, and extending the state-of-the-art HE, PHE, SWHE, and FHE systems.
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1 INTRODUCTION

In ancient Greek, the term (homos) was used to mean “same,” while (morphe) was
used for “shape” (Liddell and Scott 1896). Then the term homomorphism was coined and used in
different areas. In abstract algebra, homomorphism is defined as a map preserving all the algebraic
structures between the domain and range of an algebraic set (Malik et al. 2007). The map is simply
a function, i.e., an operation, that takes the inputs from the set of domains and outputs an element
in the range (e.g., addition, multiplication). In the cryptography field, homomorphism is used as
an encryption type. Homomorphic Encryption (HE) is a kind of encryption scheme that allows a
third party (e.g., cloud, service provider) to perform certain computable functions on the encrypted
data while preserving the features of the function and format of the encrypted data. Indeed, this
homomorphic encryption corresponds to a mapping in the abstract algebra. As an example for an
additively HE scheme, for sample messagesm1 andm2, one can obtain E (m1 +m2) by using E (m1)
and E (m2) without knowingm1 andm2 explicitly, where E denotes the encryption function.

Normally, encryption is a crucial mechanism to preserve the privacy of any sensitive informa-
tion. However, the conventional encryption schemes cannot work on the encrypted data without
decrypting it first. In other words, the users have to sacrifice their privacy to make use of cloud
services such as file storing, sharing, and collaboration. Moreover, untrusted servers, providers,
and popular cloud operators can keep physically identifying elements of users long after users
end the relationship with the services (McMillan 2013). This is a major privacy concern for users.
In fact, it would be perfect if there existed a scheme that would not restrict the operations to be
computed on the encrypted data while it would be still encrypted. From a historical perspective in
cryptology, the term homomorphism was used for the first time by Rivest et al. (1978a) in 1978 as
a possible solution to the computing without decrypting problem. This given basis in Rivest et al.
(1978a) has led to numerous attempts by researchers around the world to design such a homomor-
phic scheme with a large set of operations. In this work, the primary motivation is to survey the
HE schemes focusing on the most recent improvements in this field, including partially, somewhat,
and fully HE schemes.

A simple motivational HE example for a sample cloud application is illustrated in Figure 1. In
this scenario, the client,C , first encrypts his or her private data (Step 1), then sends the encrypted
data to the cloud servers, S , (Step 2). When the client wants to perform a function (i.e., query),
f (), over his or her own data, he or she sends the function to the server (Step 3). The server
performs a homomorphic operation over the encrypted data using the Eval function, i.e., computes
f () blindfolded (Step 4) and returns the encrypted result to the client (Step 5). Finally, the client
recovers the data with his or her own secret key and obtains f (m) (Step 6). As seen in this simple
example, the homomorphic operation, Eval (), at the server side does not require the private key
of the client and allows various operations such as addition and multiplication on the encrypted
client data.

An early attempt to compute functions/operations on encrypted data is Yao’s garbled cir-

cuit1 study (Yao 1982). Yao proposed a two-party communication protocol as a solution to the

1A circuit is the set of connected gates (e.g., AND and XOR gates in Boolean circuits) where the evaluation is completed

by calculating the output of each gate in turn.
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Fig. 1. A simple client-server HE scenario, where C is Client and S is Server.

millionaires’ problem, which compares the wealth of two rich people without revealing the exact
amount to each other. However, in Yao’s garbled circuit solution, ciphertext size grows at least lin-
early with the computation of every gate in the circuit. This yields a very poor efficiency in terms
of computational overhead and too much complexity in its communication protocol. Until Gen-
try’s breakthrough in Gentry (2009), all the attempts (Rivest et al. 1978b; Goldwasser and Micali
1982; ElGamal 1985; Benaloh 1994; Naccache and Stern 1998; Okamoto and Uchiyama 1998; Paillier
1999; Damgård and Jurik 2001; Kawachi et al. 2007; Yao 1982; Boneh et al. 2005; Sander et al. 1999;
Ishai and Paskin 2007) have allowed either one type of operation or a limited number of operations
on the encrypted data. Moreover, some of the attempts are even limited over a specific type of set
(e.g., branching programs). In fact, all these different HE attempts can neatly be categorized under
three types of schemes with respect to the number of allowed operations on the encrypted data
as follows: (1) Partially Homomorphic Encryption (PHE) allows only one type of operation with an
unlimited number of times (i.e., no bound on the number of usages). (2) Somewhat Homomorphic

Encryption (SWHE) allows some types of operations a limited number of times. (3) Fully Homo-

morphic Encryption (FHE) allows an unlimited number of operations for an unlimited number of
times.

PHE schemes are deployed in some applications like e-voting (Benaloh 1987) or Private Informa-
tion Retrieval (PIR) (Kushilevitz and Ostrovsky 1997). However, these applications were restricted
in terms of the types of homomorphic evaluation operations. In other words, PHE schemes can
only be used for particular applications, whose algorithms include only addition or multiplica-
tion operations. On the other hand, the SWHE schemes support both addition and multiplication.
Nonetheless, in SWHE schemes that are proposed before the first FHE scheme, the size of the ci-
phertexts grows with each homomorphic operation and hence the maximum number of allowed
homomorphic operations is limited. These issues put a limit on the use of PHE and SWHE schemes
in real-life applications. Eventually, the increasing popularity of cloud-based services accelerated
the design of HE schemes that can support an arbitrary number of homomorphic operations with
random functions, i.e., FHE. Gentry’s FHE scheme is the first plausible and achievable FHE scheme
(Gentry 2009). It is based on ideal lattices in math, and it is not only a description of the scheme
but also a powerful framework for achieving FHE. However, it is conceptually and practically not
a realistic scheme. Especially, the bootstrapping part, which is the intermediate refreshing proce-
dure of a processed ciphertext, is too costly in terms of computation. Therefore, a lot of follow-up
improvements and new schemes were proposed in the following years.

Contribution: In this work, we provide a comprehensive survey of all the main FHE schemes as
of this writing. We also cover a survey of important PHE and SWHE schemes as they are the first
works in accomplishing the FHE dream and are still popular as FHE schemes are very costly. Fur-
thermore, we include the FHE implementations focusing on the improvements with each scheme.
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FHE attracts the interest of people from very different research areas in terms of theoretical, imple-
mentation, and application perspectives. This survey is structured to provide an easy digest of the
relatively complex homomorphic encryption topic. For instance, while a mathematician focuses
on the improvement from a theoretical perspective, a hardware designer tries to improve the effi-
ciency of FHE by implementing on GPU instead of CPU. All such different attempts make it harder
to follow recent works. Therefore, it is important to collect and categorize the existing FHE works
focusing on recent improvements. In addition, we mention the challenges and future perspectives
of HE to motivate the researchers and practitioners to explore and improve the performance of HE
schemes and their applications. This survey is intended to give a clear knowledge foundation to
researchers and practitioners interested in knowing, applying, and extending state-of-the-art HE
systems.

Organization: The remainder of the article is organized as follows: In Section 3, descriptions of
different HE schemes, PHE, SWHE, and FHE schemes, are presented. Then, in Section 4, different
implementations of SWHE and FHE schemes, which were introduced after Gentry’s work, are
given and their performances are discussed. Finally, in Section 5, further research directions and
lessons learned are given and the article is concluded.

2 RELATED WORK

Like our work in this article, there are similar useful surveys in the literature. In fact, unfortu-
nately, some of the surveys only cover the theoretical information of the schemes as in Parmar
et al. (2014) and Ahila and Shunmuganathan (2014), and some of them are directly for expert
readers and mathematicians as in Vaikuntanathan (2011), Silverberg (2013), and Gentry (2014).
Compared to these surveys, our survey has a broad reader perspective including researchers and
practitioners interested in the advances and implementations in the field of HE, especially FHE.
Furthermore, while the survey in Aguilar-Melchor et al. (2013) only covers the signal processing
applications, that in Hrestak and Picek (2014) covers a few FHEs on only cloud applications. Since
our survey is not limited to specific application areas, we do not articulate these specific applica-
tion areas in detail, but we list the theory and implementation of all existing HE schemes, which
can be used in possible futuristic application areas with recent advancements. After Fontaine and
Galand (2007), many HE schemes were introduced. Compared to these useful surveys, our sur-
vey focuses on the most recent HE schemes, since most of the significant improvements were
introduced recently (after 2009). Although (Moore et al. 2014b) is one of the most recent surveys,
it focuses on the hardware implementation solutions of FHE schemes. This survey is not lim-
ited to hardware solutions, as, in addition to hardware solutions, it covers software solutions of
implementations as well in the implementation section. After (Sen 2013 and Wu 2015), several
new FHE schemes, which improve FHE in a sufficiently great way as to be worthy of attention,
were proposed in the literature. Finally, it is worth mentioning that Armknecht et al. (2015) pro-
vide a systematic explanation of the new terminology related to FHE and Armknecht et al. (2013)
provide security and a characterization of all existing group homomorphic encryption schemes,
where they do not present all the HE schemes and their implementations in detail. Compared to
these useful prior works, nonetheless, our survey is intrinsically different from the aforementioned
surveys.

3 HOMOMORPHIC ENCRYPTION SCHEMES

In this section, we explain the basics of HE theory. Then, we present notable PHE, SWHE, and
FHE schemes. For each scheme, we also give a brief description of the scheme.
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Fig. 2. Timeline of HE schemes until Gentry’s first FHE scheme.

Definition 1. An encryption scheme is called homomorphic over an operation “�” if it supports
the following equation:

E (m1) � E (m2) = E (m1 �m2), ∀m1,m2 ∈ M, (1)

where E is the encryption algorithm and M is the set of all possible messages.

In order to create an encryption scheme allowing the homomorphic evaluation of arbitrary
functions, it is sufficient to allow only addition and multiplication operations because addition
and multiplication are functionally complete sets over finite sets. Particularly, any Boolean circuit
can be represented using only XOR (addition) and AND (multiplication) gates. While an HE scheme
can use the same key for both encryption and decryption (symmetric), it can also be designed to use
the different keys to encrypt and decrypt (asymmetric). A generic method to transform symmetric
and asymmetric HE schemes to each other is demonstrated in Rothblum (2011).

An HE scheme is primarily characterized by four operations: KeyGen, Enc , Dec , and Eval .
KeyGen is the operation that generates a secret and public key pair for the asymmetric version
of HE or a single key for the symmetric version. Actually, KeyGen, Enc , and Dec are not different
from their classical tasks in conventional encryption schemes. However, Eval is an HE-specific op-
eration, which takes ciphertexts as input and outputs a ciphertext corresponding to a functioned
plaintext. Eval performs the function f () over the ciphertexts (c1, c2) without seeing the messages
(m1,m2). Eval takes ciphertexts as input and outputs evaluated ciphertexts. The most crucial point
in this homomorphic encryption is that the format of the ciphertexts after an evaluation process
must be preserved in order to be decrypted correctly. In addition, the size of the ciphertext should
also be constant to support an unlimited number of operations. Otherwise, the increase in the
ciphertext size will require more resources and this will limit the number of operations.

Of all HE schemes in the literature, PHE schemes support the Eval function for only either
addition or multiplication, SWHE schemes support for only a limited number of operations or
some limited circuits (e.g., branching programs), and FHE schemes support the evaluation of ar-
bitrary functions (e.g., searching, sorting, max, min, etc.) for an unlimited number of times over
ciphertexts. The well-known PHE, SWHE, and FHE schemes are summarized in the timeline in
Figure 2 and are explained in the following sections with greater detail. The interest in the area of
HE significantly increased after the work of Gentry (2009) in 2009. Therefore, we articulate the
HE schemes, after Gentry’s work in greater detail and we also discuss their implementations and
recent techniques to make it faster in Section 4. Here, we start with the PHE schemes, which are
the first stepping stones for FHE schemes.
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3.1 Partially Homomorphic Encryption Schemes

There are several useful PHE examples (Rivest et al. 1978b; Goldwasser and Micali 1982;
ElGamal 1985; Benaloh 1994; Naccache and Stern 1998; Okamoto and Uchiyama 1998; Paillier 1999;
Damgård and Jurik 2001; Kawachi et al. 2007) in the literature. Each has improved the PHE in some
way. However, in this section, we primarily focus on major PHE schemes that are the basis for
many other PHE schemes.

3.1.1 RSA. RSA is an early example of PHE and introduced by Rivest et al. (1978b) shortly after
the invention of public key cryptography by Diffie and Hellman (1976). RSA is the first feasible
achievement of the public key cryptosystem. Moreover, the homomorphic property of RSA was
shown by Rivest et al. (1978a) just after the seminal work of RSA. Indeed, the first attested use of
the term “privacy homomorphism” was introduced in Rivest et al. (1978a). The security of the RSA
cryptosystem is based on the hardness of the factoring problem of the product of two large prime
numbers (Montgomery 1994).2 RSA is defined as follows:

—KeyGen Algorithm: First, for large primes p and q, n = pq and ϕ = (p − 1) (q − 1) are com-
puted. Then, e is chosen such that дcd (e,ϕ) and d are calculated by computing the multi-
plicative inverse of e (i.e., ed ≡ 1 mod ϕ). Finally, (e,n) is released as the public key pair
while (d,n) is kept as the secret key pair.

—Encryption Algorithm: First, the message is converted into a plaintextm such that 0 ≤ m < n,
and then the RSA encryption algorithm is as follows:

c = E (m) =me (mod n), ∀m ∈ M, (2)

where c is the ciphertext.
—Decryption Algorithm: The message m can be recovered from the ciphertext c using the

secret key pair (d,n) as follows:

m = D (c ) = cd (mod n). (3)

—Homomorphic Property: Form1,m2 ∈ M ,

E (m1) ∗ E (m2) = (me
1 (mod n)) ∗ (me

2 (mod n)) = (m1 ∗m2)e (mod n) = E (m1 ∗m2). (4)

The homomorphic property of RSA shows that E (m1 ∗m2) can be directly evaluated by using
E (m1) and E (m2) without decrypting them. In other words, RSA is only homomorphic over mul-
tiplication. Hence, it does not allow the homomorphic addition of ciphertexts.

3.1.2 Goldwasser-Micali. GM proposed the first probabilistic public key encryption scheme
proposed in Goldwasser and Micali (1982). The GM cryptosystem is based on the hardness of
quadratic residuosity problem (Kaliski 2005). Number a is called quadratic residue modulo n if there
exists an integer x such that x2 ≡ a (mod n). The quadratic residuosity problem decides whether
a given number q is quadratic modulo n or not. The GM cryptosystem is described as follows:

—KeyGen Algorithm: Similar to RSA, n = pq is computed where p and q are distinct large
primes, and then x is chosen as one of the quadratic nonresidue modulo n values with
( x

n
) = 1. Finally, (x ,n) is published as the public key while (p,q) is kept as the secret key.

2Here, we do not mean that RSA is secure. We mean the most basic attack on RSA (e.g., key recovering attack) has to solve

the problem of the factoring of two large primes. For example, plain RSA is not secure against Chosen Plaintext Attacks

(CPAs) as its encryption algorithm is deterministic. We use the same idea for the rest of the article as well. Because of the

limited space, we do not discuss the details of the security of each encryption scheme.
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—Encryption Algorithm: First, the message (m) is converted into a string of bits. Then, for every
bit of the messagemi , a quadratic nonresidue value yi is produced such that дcd (yi ,n) = 1.
Then, each bit is encrypted to ci as follows:

ci = E (mi ) = y2
i x

mi (mod n), ∀mi = {0, 1}, (5)

where m =m0m1 . . .mr , c = c0c1 . . . cr , and r is the block size used for the message space
and x is picked from Zn

∗ at random for every encryption, where Zn
∗ is the multiplicative

subgroup of integers modulo n that includes all the numbers smaller than r and relatively
prime to r .

—Decryption Algorithm: Since x is picked from the set Zn
∗ (1 < x ≤ n − 1), x is quadratic

residue modulo n for onlymi = 0. Hence, to decrypt the ciphertext ci , one decides whether
ci is a quadratic residue modulo n or not; if so,mi returns 0, or else mi returns 1.

—Homomorphic Property: For each bitmi ∈ {0, 1},

E (m1) ∗ E (m2) = (y2
1x

m1 (mod n)) ∗ (y2
2x

m2 (mod n))

= (y1 ∗ y2)2xm1+m2 (mod n) = E (m1 +m2).
(6)

The homomorphic property of the GM cryptosystem shows that encryption of the sum E (m1 ⊕
m2) can be directly calculated from the separately encrypted bits, E (m1) and E (m2). Since the
message and ciphertext are the elements of the set {0, 1}, the operation is the same with exclusive-
OR (XOR).3 Hence, GM is homomorphic over only addition for binary numbers.

3.1.3 El-Gamal. In 1985, Taher Elgamal proposed a new public key encryption scheme
(ElGamal 1985), which is the improved version of the original Diffie-Hellman Key Exchange (Diffie
and Hellman 1976) algorithm, which is based on the hardness of certain problems in discrete log-
arithm (Kevin 1990). It is mostly used in hybrid encryption systems to encrypt the secret key of a
symmetric encryption system. The El-Gamal cryptosystem is defined as follows:

—KeyGen Algorithm: A cyclic group G with order n using generator д is produced. In a cyclic
group, it is possible to generate all the elements of the group using the powers of one of its
own element. Then, h = дy is computed for randomly chosen y ∈ Zn

∗. Finally, the public
key is (G,n,д,h) and x is the secret key of the scheme.

—Encryption Algorithm: The messagem is encrypted using д and x , where x is randomly cho-
sen from the set {1, 2, . . . ,n − 1} and the output of the encryption algorithm is a ciphertext
pair (c = (c1, c2)):

c = E (m) = (дx ,mhx ) = (дx ,mдxy ) = (c1, c2). (7)

—Decryption Algorithm: To decrypt the ciphertext c , first, s = c1
y is computed, where y is the

secret key. Then, the decryption algorithm works as follows:

c2 · s−1 =mдxy · д−xy =m. (8)

—Homomorphic Property:

E (m1) ∗ E (m2) = (дx1 ,m1h
x1 ) ∗ (дx2 ,m2h

x2 ) = (дx1+x2 ,m1 ∗m2h
x1+x2 ) = E (m1 ∗m2). (9)

As seen from this derivation, the El-Gamal cryptosystem is multiplicatively homomorphic. It
does not support addition operations over ciphertexts.

3XOR can be thought of as binary addition.
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3.1.4 Benaloh. Benaloh proposed an extension of the GM cryptosystem by improving it to
encrypt the message as a block instead of bit by bit (Benaloh 1994). Benaloh’s proposal was based
on the higher residuosity problem. The higher residuosity problem (xn) (Zheng et al. 1988) is the
generalization of quadratic residuosity problems (x2) that is used for the GM cryptosystem.

—KeyGen Algorithm: Block size r and large primes p and q are chosen such that r divides p − 1
and r is relatively prime to (p − 1)/r andq − 1 (i.e.,дcd (r , (p − 1)/r ) = 1 andдcd (r , (q − 1)) =
1). Then, n = pq and ϕ = (p − 1) (q − 1) are computed. Lastly, y ∈ Zn

∗ is chosen such that
yϕ � 1 mod n, where Zn

∗ is the multiplicative subgroup of integers modulo n that includes
all the numbers smaller than r and relatively prime to r . Finally, (y,n) is published as the
public key, and (p,q) is kept as the secret key.

—Encryption Algorithm: For the message m ∈ Zr , where Zr = {0, 1, . . . , r − 1}, choose a ran-
dom u such that u ∈ Zn

∗. Then, to encrypt the message m:

c = E (m) = ymur (mod n), (10)

where the public key is the modulus n and base y with the block size of r .
—Decryption Algorithm: The messagem is recovered by an exhaustive search for i ∈ Zr such

that

(y−ic )ϕ/r ≡ 1, (11)

where the message m is returned as the value of i , i.e.,m = i .
—Homomorphic Property:

E (m1) ∗ E (m2) = (ym1u1
r (mod n)) ∗ (ym2u2

r (mod n))

= ym1+m2 (u1 ∗ u2)r (mod n) = E (m1 +m2 (mod n)).
(12)

The homomorphic property of Benaloh shows that any multiplication operation on encrypted
data corresponds to the addition on plaintext. As the encryption of the addition of the messages
can directly be calculated from encrypted messages E (m1) and E (m2), the Benaloh cryptosystem
is additively homomorphic.

3.1.5 Paillier. In 1999, Paillier (1999) introduced another novel probabilistic encryption scheme
based on the composite residuosity problem (Jager 2012). The composite residuosity problem is very
similar to quadratic and higher residuosity problems that are used in GM and Benaloh cryptosys-
tems. It questions whether there exists an integerx such thatxn ≡ a (mod n2) for a given integera.

—KeyGen Algorithm: For large primes p and q such that дcd (pq, (p − 1) (q − 1)) = 1, com-
pute n = pq and λ = lcm(p − 1,q − 1). Then, select a random integer д ∈ Z∗n2 by checking

whether дcd (n,L(дλ mod n2
)) = 1, where the function L is defined as L(u) = (u − 1)/n for

every u from the subgroup Z ∗
n2 that is a multiplicative subgroup of integers modulo n2 in-

stead of n as in the Benaloh cryptosystem. Finally, the public key is (n,д) and the secret key
is a (p,q) pair.

—Encryption Algorithm:

For each messagem, the number r is randomly chosen and the encryption works as follows:

c = E (m) = дmrn (mod n2). (13)

—Decryption Algorithm: For a proper ciphertext c < n2, the decryption is done by

D (c ) =
L(cλ (mod n2))

L(дλ (mod n2))
mod n =m, (14)

where the private key pair is (p,q).
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—Homomorphic Property:

E (m1) ∗ E (m2) = (дm1r1
n (mod n2)) ∗ (дm2r2

n (mod n2))

= дm1+m2 (r1 ∗ r2)n (mod n2) = E (m1 +m2).
(15)

This derivation shows that Pailliler’s encryption scheme is homomorphic over addition. In ad-
dition to homomorphism over the addition operation, Pailliler’s encryption scheme has some ad-
ditional homomorphic properties, which allow extra basic operations on plaintexts m1,m2 ∈ Z ∗n2

by using the encrypted plaintexts E (m1) and E (m2) and public key pair (n,д):

E (m1) ∗ E (m2) (mod n2) = E (m1 +m2 (mod n)), (16)

E (m1) ∗ дm2 (mod n2) = E (m1 +m2 (mod n)), (17)

E (m1)m2 (mod n2) = E (m1m2 (mod n)). (18)

These additional homomorphic properties describe different cross-relations between various
operations on the encrypted data and the plaintexts. In other words, Equations (16), (17), and (18)
show how the operations computed on encrypted data affect the plaintexts.

3.1.6 Others. Moreover, Okamoto-Uchiyama (OU) (Okamoto and Uchiyama 1998) proposed a
new PHE scheme to improve the computational performance by changing the set, where the en-
cryptions of previous HE schemes work. The domain of the scheme is the same as the previous
public key encryption schemes, Z ∗n ; however, Okamoto-Uchiyama sets n = p2q for large primes
p and q. Furthermore, Naccache-Stern (NS) (Naccache and Stern 1998) presented another PHE
scheme as a generalization of the Benaloh cryptosystem to increase its computational efficiency.
The proposed work changed only the decryption algorithm of the scheme. Likewise, Damgard-
Jurik (DJ) (Damgård and Jurik 2001) introduced another PHE scheme as a generalization of Pail-
lier. These three cryptosystems preserve the homomorphic property while improving the original
homomorphic schemes.

Similarly, Kawachi (KTX) et al. (2007) suggested an additively homomorphic encryption scheme
over a large cyclic group, which is based on the hardness of underlying lattice problems. They
named the homomorphic property of their proposed scheme as pseudohomomorphic. Pseudohomo-
morphism is an algebraic property and still allows homomorphic operations on ciphertext; how-
ever, the decryption of the homomorphically operated ciphertext works with a small decryption
error. Finally, Galbraith (2002) introduced a more natural generalization of Paillier’s cryptosystem,
applying it on elliptic curves while still preserving the homomorphic property of Paillier’s cryp-
tosystem. Homomorphic properties of well-known PHE schemes are briefly summarized in Table 1.

3.2 Somewhat Homomorphic Encryption Schemes

There are useful SWHE examples (Yao 1982; Sander et al. 1999; Boneh et al. 2005; Ishai and Paskin
2007) in the literature before 2009. After the first plausible FHE published in 2009 (Gentry 2009),
some SWHE versions of FHE schemes were also proposed because of the performance issues asso-
ciated with FHE schemes. We cover these SWHE schemes under the FHE section. In this section,
we primarily focus on major SWHE schemes, which were used as a stepping stone to the first
plausible FHE scheme.

3.2.1 BGN. Before 2005, all proposed cryptosystems’ homomorphism properties were re-
stricted to only either addition or multiplication operations, i.e., SWHE schemes. One of the most
significant steps toward an FHE scheme was introduced by Boneh-Goh-Nissim (BGN) in Boneh
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Table 1. Homomorphic Properties of Well-Known PHE Schemes

Homomorphic Operation

Scheme Add Mult

RSA (Rivest et al. 1978b) ✔
GM (Goldwasser and Micali 1982) ✔
El-Gamal (ElGamal 1985)4 ✔
Benaloh (Benaloh 1994) ✔
NS (Naccache and Stern 1998) ✔
OU (Okamoto and Uchiyama 1998) ✔
Paillier (Paillier 1999) ✔
DJ (Damgård and Jurik 2001) ✔
KTX (Kawachi et al. 2007) ✔
Galbraith (Galbraith 2002) ✔

et al. (2005). BGN evaluates 2-DNF5 formulas on ciphertext and it supports an arbitrary number
of additions and one multiplication by keeping the ciphertext size constant. The hardness of the
scheme is based on the subgroup decision problem (Gjøsteen 2004). The subgroup decision problem
simply decides whether an element is a member of a subgroup Gp of group G of composite order
n = pq, where p and q are distinct primes.

—KeyGen Algorithm: The public key is released as (n,G,G1, e,д,h). In the public key, e is a
bilinear map such that e : G ×G → G1, where G,G1 are groups of order n = q1q2. д and u
are the generators of G and set h = uq2 and h is the generator of G with order q1, which is
kept hidden as the secret key.

—Encryption Algorithm: To encrypt a message m, a random number r from the set
{0, 1, . . . ,n − 1} is picked and encrypted using the precomputed д and h as follows:

c = E (m) = дmhr mod n. (19)

—Decryption Algorithm: To decrypt the ciphertext c , one first computes c ′ = cq1 = (дmhr )q1 =

(дq1 )m (note that hq1 ≡ 1 mod n) and д′ = дq1 using the secret key q1 and decryption is
completed as follows:

m = D (c ) = logд′ c
′. (20)

In order to decrypt efficiently, the message space should be kept small because of the fact
that the discrete logarithm cannot be computed quickly.

—Homomorphism over Addition: Homomorphic addition of plaintextsm1 andm2 using cipher-
texts E (m1) = c1 and E (m2) = c2 are performed as follows:

c = c1c2h
r = (дm1hr1 ) (дm2hr2 )hr = дm1+m2hr ′, (21)

where r = r1 + r2 + r and it can be seen that m1 +m2 can be easily recovered from the re-
sulting ciphertext c .

—Homomorphism over Multiplication: To perform homomorphic multiplication, use д1 with
order n and h1 with order q1 and set д1 = e (д,д), h1 = e (д,h), and h = дαq2 . Then, the ho-
momorphic multiplication of messages m1 and m2 using the ciphertexts c1 = E (m1) and

4The method to convert El-Gamal into an additively homomorphic encryption scheme is shown in Cramer et al. (1997).

However, it is still PHE as it still supports only addition operation, not both at the same time.
5Disjunctive Normal Form with at most two literals in each clause.
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c2 = E (m2) are computed as follows:

c = e (c1, c2)h1
r = e (дm1hr1 ,дm2hr2 )h1

r

= д1
m1m2h1

m1r2+r2m1+αq2r1r2+r = д1
m1m2h1

r ′ .
(22)

It is seen that r ′ is uniformly distributed like r and so m1m2 can be correctly recovered from
resulting ciphertext c . However, c is now in the group G1 instead of G. Therefore, another homo-
morphic multiplication operation is not allowed inG1 because there is no pairing from the setG1.
However, resulting ciphertext in G1 still allows an unlimited number of homomorphic additions.
Moreover, Boneh et al. also showed the evaluation of 2-DNF formulas using the basic 2-DNF pro-
tocol. Their protocol gives a quadratic improvement in terms of the protocol complexity over Yao’s
well-known garbled circuit protocol in Yao (1982).

3.2.2 Others. In the literature of HE schemes, one of the first SWHE schemes is the Polly
Cracker scheme (Fellows and Koblitz 1994). It allows both multiplication and addition operations
over the ciphertexts. However, the size of the ciphertext grows exponentially with the homomor-
phic operation, and the multiplication operation is especially extremely expensive. Later more
efficient variants (Levy-dit Vehel and Perret 2004; Van Ly 2006) are proposed, but almost all of
them are later shown vulnerable to attacks (Steinwandt 2010; Levy-dit Vehel et al. 2009). There-
fore, they are either insecure or impractical (Le 2003). Recently, Albrecht et al. (2011) introduced
a Polly Cracker with Noise cryptosystem, where the homomorphic addition operations do not
increase the ciphertext size, while the multiplications square it.

Another idea of evaluating operations on encrypted data is realized over different sets. Sander,
Young, and Yung (SYY) described the first SWHE scheme over a semigroup, NC1,6 (Sander et al.
1999), which requires fewer properties than a group. NC1 is a complexity class that includes the
circuits with polylogarithmic depth and polynomial size. The proposed scheme supported polyno-
mially many ANDing of ciphertexts with one OR/NOT gate. However, the ciphertext size increased
by a constant multiplication with each OR/NOT gate evaluation. This increase limits the evalu-
ation of circuit depth. Yuval Ishai and Anat Paskin (IP) expanded the set to branching programs
(aka Binary Decision Diagrams), which are the directed acyclic graphs where every node has two
outgoing edges with labeled binary 0 and 1 (Ishai and Paskin 2007). In other words, they proposed a
public key encryption scheme by evaluating the branching programs on the encrypted data. More-
over, Melchor et al. (2010) proposed a generic construction method to obtain a chained encryp-
tion scheme allowing the homomorphic evaluation of constant depth circuits over ciphertext. The
chained encryption scheme is obtained from well-known encryption schemes with some homo-
morphic properties. For example, they showed how to obtain a combination of BGN (Boneh et al.
2005) and Kawachi et al. (2007). As mentioned before, BGN allows an arbitrary number of addi-
tions and one multiplication, while Kawachi’s scheme is only additively homomorphic. Hence, the
resulting combined scheme allows arbitrary additions and two multiplications. They also showed
how this procedure is applied to the scheme in Melchor et al. (2008) allowing a predefined number
of homomorphic additions, to obtain a scheme that allows an arbitrary number of multiplications
as well. However, in multiplication, ciphertext size grows exponentially, while it is constant in a
homomorphic addition. The summary of some well-known SWHE schemes is given in Table 2.
As shown in Table 2, while in Yao, SYY, and IP cryptosystems, the size of the ciphertext grows
with each homomorphic operation; in BGN it stays constant. This property of BGN is a signif-
icant improvement to obtain an FHE scheme. Accordingly, Gentry, Halevi, and Vaikuntanathan
later simplified the BGN cryptosystem (Gentry et al. 2010). In their version, the underlying

6NC stands for “Nick’s Class” for the honor of Nick Pippenger.
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Table 2. Comparison of Some Well-Known SWHE Schemes before Gentry’s Work

Evaluation Size Evaluation Circuit Ciphertext Size

Yao (1982) arbitrary garbled circuit grows at least linearly

SYY (Sander et al. 1999)
poly-many AND
& one OR/NOT

NC1 circuit grows exponentially

BGN (Boneh et al. 2005)
unlimited add &

1 mult
2-DNF formulas constant

IP (Ishai and Paskin 2007) arbitrary branching programs
doesn’t depend on the

size of function

security assumption is changed to hardness of the LWE problem. The BGN cryptosystem chooses
input from a small set to decrypt correctly. In contrast, a recent scheme introduced in Gentry
et al. (2010) have much larger message space. Moreover, some of the attempts to obtain an FHE
scheme based on SWHE schemes are reported as broken. For instance, vulnerabilities for Mullen
and Shiue (1994), i Ferrer (1996), Grigoriev and Ponomarenko (2006), and Domingo-Ferrer (2002)
were reported in Steinwandt and Geiselmann (2002), Choi et al. (2007), Wagner (2003), and Cheon
et al. (2006), respectively.

3.3 Fully Homomorphic Encryption Schemes

An encryption scheme is called an FHE scheme if it allows an unlimited number of evaluation op-
erations on the encrypted data and resulting output is within the ciphertext space. After almost 30
years from the introduction of privacy homomorphism concept (Rivest et al. 1978a), Gentry pre-
sented the first feasible proposal in his seminal PhD thesis to a long-term open problem, which is
obtaining an FHE scheme (Gentry 2009). Gentry’s proposed scheme gives not only an FHE scheme
but also a general framework to obtain an FHE scheme. Hence, a lot of researchers have attempted
to design a secure and practical FHE scheme after Gentry’s work.

Although Gentry’s proposed ideal lattice-based FHE scheme (Gentry 2009) is very promising, it
also had a lot of bottlenecks such as its computational cost in terms of applicability in real life, and
some of its advanced mathematical concepts make it complex and hard to implement. Therefore,
many new schemes and optimizations have followed his work in order to address aforementioned
bottlenecks. The security of new approaches to obtain a new FHE scheme is mostly based on the
hard problems on lattices.

A lattice is the linear combination of independent vectors (basis vectors), b1,b2, . . . ,bn . A lattice
L is formulated as follows:

L =
n∑

i=1

�bi ∗vi ,vi ∈ Z, (23)

where each vector b1,b2, . . . ,bi is called a basis of the lattice L. The basis of a lattice is not unique.
There are infinitely many bases for a given lattice. A basis is called “good” if the basis vectors are
almost orthogonal; otherwise, it is called “bad” basis of the lattice (Micciancio and Regev 2009).
Roughly, while good bases are typically long, bad bases are relatively shorter. Indeed, the lat-
tice theory was first presented by Minkowski (1968). Then as a seminal work, a class of random
worst-case lattice problems was mentioned in Ajtai (1996). Two well-known modern problems sug-
gested in Ajtai (1996) for lattice-based cryptosystems are Closest Vector Problem (CVP) and Short-
est Vector Problem (SVP) (Peikert 2015). A year later, Goldreich, Goldwasser, and Halevi (GGH)
(Goldreich et al. 1997) proposed an important type of PKE scheme, whose hardness is based on
the lattice reduction problem (Peikert 2015). Lattice reduction tries to find a good basis, which is
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Fig. 3. Main FHE families after Gentry’s breakthrough.

relatively short and orthogonal, for a given lattice. In a GGH cryptosystem, the public key and
the secret key are chosen from “bad” and “good” bases of the lattice, respectively. The idea behind
this choice is that CVP and SVP problems can easily be solved in polynomial time for the lattices
with the known good bases. However, the best-known algorithms (e.g., LLL in Lenstra et al. (1982))
solve these problems in exponential time without knowing the good bases of the lattice. Hence,
recovering the message from a given ciphertext is equal to solving the CVP and SVP problems. In
a GGH cryptosystem, the message is embedded in the noise to obtain the ciphertext. In order to
recover the message from ciphertext, the secret key (good basis) is used to find the closest lattice
point.

Before Gentry’s work, in Regev (2006), cryptographers’ attention was drawn to lattice-based
cryptology and especially its great promising properties for postquantum cryptology. Its promising
properties are listed as its security proofs, efficient implementations, and simplicity. Moreover,
another lattice-related problem, which has gained popularity in last few years, especially after
being used as a base to build an FHE scheme, is LWE (Zhang 2014). One of the most significant
works for lattice-based cryptosystems was studied in Hoffstein et al. (1998), which presented a
new PKE scheme and whose security is based on SVP on the lattice. In the SVP problem, given a
basis of a lattice, the goal is to find the shortest nonzero vector in the lattice.

After Gentry’s work, the lattices have become more popular among cryptography researchers.
First, some works like (Smart and Vercauteren 2010) focused on just improving Gentry’s ideal
lattice-based FHE scheme in Gentry (2009). Then, an FHE scheme over integers based on the
Approximate-GCD problems was introduced (Van Dijk et al. 2010). The main motivation behind
the scheme is the conceptual simplicity. Afterward, another FHE scheme whose hardness is based
on Ring Learning with Error (RLWE) problems was suggested (Brakerski and Vaikuntanathan
2011). The proposed scheme promises some efficiency features. Lastly, an NTRU-like FHE was
presented for its promising efficiency and standardization properties (López-Alt et al. 2012). NTRU-
Encrypt is an old and strongly standardized lattice-based encryption scheme whose homomorphic
properties were realized recently. So, these and similar attempts can be categorized into under four
main FHE families as shown in Figure 3: (1) ideal lattice based (Gentry 2009), (2) over integers (Van
Dijk et al. 2010), (3) (R)LWE based (Brakerski and Vaikuntanathan 2011), and (4) NTRU-like
(López-Alt et al. 2012). In the following sections, we will articulate these four main FHE families
in greater detail. We will also explore other follow-up works after these.

3.3.1 Ideal Lattice-Based FHE Schemes. Gentry’s first FHE scheme in his PhD thesis (Gentry
2009) is a GGH-type of encryption scheme, where GGH was proposed originally by Goldreich
et al. (1997). However, Gentry encrypted the message by embedding noise using a double-layer
instead of one-layer idea in the GGH cryptosystem. Indeed, Gentry started his breakthrough work
from the SWHE scheme based on ideal lattices.

As mentioned earlier, an SWHE scheme can evaluate the ciphertext homomorphically for only
a limited number of operations. After a certain threshold, the decryption function fails to recover
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the message from the ciphertext correctly. The amount of noise in the ciphertext must be de-
creased to transform the noisy ciphertext into a proper ciphertext. Gentry used genius blueprint
methods called squashing and bootstrapping to obtain a ciphertext that allows a number of homo-
morphic operations to be performed on it. These processes can be repeated again and again. In
other words, one can evaluate unlimited operations on the ciphertexts that make the scheme fully
homomorphic.

As an initial construction, Gentry used ideals and rings without lattices to design the homomor-
phic encryption scheme, where an ideal is a property-preserving subset of the rings such as even
numbers. Then, each ideal used in his scheme was represented by the lattices. For example, an ideal
I in Z[x]/( f (x )) with f (x ) of degree n in an ideal lattice can easily be represented by a column of
lattices with basis BI of length n, since the bases BI will produce an n × n matrix. Gentry’s SWHE
scheme using ideals and rings is described below:

—KeyGen Algorithm: For the given ring R and the basis BI of ideal I , the IdealGen(R,BI )

algorithm generates the pair of (Bsk
J
,B

pk

J
), where IdealGen() is an algorithm outputting the

relatively prime public and the secret key bases of the ideal lattice with basis BI such that
I + J = R. A Samp () algorithm is also used in key generation to sample from the given coset
of the ideal, where a coset is obtained by shifting an ideal by a certain amount. Finally, the

public key consists of (R,BI ,B
pk

J
, Samp ()) and the secret key only includes Bsk

J
.

—Encryption Algorithm:

For randomly chosen vectors �r and �д, using the public key (basis) Bpk chosen from one of
the “bad” bases of the ideal lattice L, the message �m ∈ {0, 1}n is encrypted by

�c = E (�m) = �m + �r · BI + �д · Bpk

J
, (24)

where BI is the basis of the ideal lattice L. Here, �m + �r · BI is called a “noise” parameter.
—Decryption Algorithm:

By using the secret key (basis) Bsk
J

, the ciphertext is decrypted as follows:

�m = �c − Bsk
J · 
(B

sk
J )−1 · �c� mod BI , (25)

where 
·� is the nearest integer function that returns the nearest integers for the coefficients
of the vector.

—Homomorphism over Addition: For the plaintext vectors �m1, �m2 ∈ {0, 1}n , additive and mul-
tiplicative homomorphisms can be verified easily as follows:

�c1 + �c2 = E ( �m1) + E ( �m2) = �m1 + �m2 + (�r1 + �r2) · BI + (�д1 + �д2) · Bpk

J
. (26)

It is clear that �c1 + �c2 still preserves the format and is within the ciphertext space. And,

to decrypt the sum of the ciphertext, one computes (�c1 + �c2) mod B
pk

J
, which is equal to

�m1 + �m2 + (�r1 + �r2) · BI for the ciphertexts whose noise amount is smaller than B
pk

J
/2. Then

the decryption algorithm works properly and recovers the sum of the message m1 +m2

correctly by taking the modulo BI of the noise.
—Homomorphism over Multiplication: Similarly for the multiplication, after setting �e = �m +
�r · BI , the homomorphic property can be expressed as follows:

�c1 × �c2 = E ( �m1) × E ( �m2) = �e1 × �e2 + (�e1 × �д2 + �e2 × �д1 + �д1 × �д2) · Bpk

J
, (27)

where �e1 × �e2 = �m1 × �m2 + ( �m1 × �r2 + �m2 × �r1 + �r1 × �r2) · BI . It can be easily verified that
the multiplication operation on ciphertexts yields the output still within the ciphertext

ACM Computing Surveys, Vol. 51, No. 4, Article 79. Publication date: July 2018.



A Survey on Homomorphic Encryption Schemes: Theory and Implementation 79:15

space. It is said that if the noise |�e1 × �e1 | is small enough, the multiplication of plaintexts
�m1 × �m2 can be correctly recovered from the multiplication of ciphertexts �c1 × �c2.

To have a better understanding of the “noise” concept, let us consider the encryption scheme
over integers.7 The encryption of the bit b is the ciphertext c = b + 2r + kp, where the key p > 2N
is an odd integer and r is a random number from the range (−n/2,n/2) and k is an integer. The
decryption works as follows:b ← (c mod p) mod 2, where (c mod p) is called a noise parameter.
If the noise parameter exceeds |p/2|, the decryption fails since (c mod p) is not equal to b + 2r
anymore. And the noise parameter grows linearly with each addition and exponentially with each
multiplication operation. If the noise parameter is very close to a lattice point (i.e., (c mod p) <<
|p/2|), further addition and multiplication operations are still allowed. This is why Gentry’s ideal
lattice-based scheme is called Somewhat Homomorphic “for now,” allowing only limited number
of operations. Since the noise grows much faster with the multiplication operations, the number
of multiplication operations before exceeding the threshold is more limited. In order to make the
scheme fully homomorphic, the bootstrapping technique was introduced by Gentry. However, the
bootstrapping process can be applied to the bootstrappable ciphertexts, which are noisy and have
small circuit depth. The depth of the circuit is related to the maximum number of operations.
Hence, first the circuit depth is reduced with squashing to the degree that the decryption can
handle properly.

Squashing: Gentry’s bootstrapping technique is allowed only for the decryption algorithms
with small depth. Therefore, he used some “tweaks” to reduce the decryption algorithm’s com-
plexity. This method is called squashing and works as follows:

First, choose a set of vectors, whose sum equals the multiplicative inverse of the secret key
((Bsk

J
)−1). If the ciphertext is multiplied by the elements of this set, the polynomial degree of the

circuit is reduced to the level that the scheme can handle. The ciphertext is now “bootstrappable.”
Nonetheless, the hardness of the recovering of the secret key is now based on the assumption of the
Sparse Subset Sum Problem (SSSP) (Hoffstein et al. 2008). This basically adds another assumption
to the provable security of the scheme.

Bootstrapping: Bootstrapping is basically a “recrypting” procedure to get a “fresh” ciphertext
from the noisy ciphertext corresponding to the same plaintext. A scheme is called bootstrappable

if it can evaluate its own decryption algorithm circuit (Gentry 2009). First, the ciphertext is trans-
formed into a bootstrappable ciphertext using squashing. Then, by applying the bootstrapping
procedure, one gets a “fresh” ciphertext. The bootstrapping works as follows: First, it is assumed
that two different public and secret key pairs are generated, (pk1, sk1) and (pk2, sk2), and while the
secret keys are kept by the client, the public keys are shared with the server. Then, the encryption
of the secret key, Encpk1 (sk1), is also transmitted to the server, which already has c = Encpk1 (m).
Since the above-obtained SWHE scheme can evaluate its own decryption algorithm homomorphi-
cally, the noisy ciphertext is decrypted homomorphically using Encpk1 (sk1). Then, the result is
encrypted using a different public key pk2, i.e., Encpk2 (Decsk1 (c )) = Encpk2 (m). Since the scheme
is assumed semantically secure, an adversary cannot distinguish the encryption of the secret key
from the encryption of 0. The last ciphertext can be decrypted using sk2, which is kept secret
by the client, i.e., Decsk2 (Encpk2 (m)) =m. In brief, first the homomorphic decryption of the noisy
ciphertext removes the noise, and then the new homomorphic encryption introduces new small
noise to the ciphertext. Now, the ciphertext is like just encrypted. Further homomorphic opera-
tions can be computed on this “fresh” ciphertext until reaching again to a threshold point. Note

7Further details about FHE over integers will be explained in Section 3.3.2.
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that Gentry’s bootstrapping method increases the computational cost noticeably and becomes a
major drawback for the practicality of FHE. In a nutshell, starting from constructing an SWHE
scheme and then a squashing method to reduce the circuit depth of the decryption algorithm and
the bootstrapping to obtain fresh ciphertext completes the creation of an FHE scheme. Hence,
one can apply bootstrapping repetitively to compute an unlimited number of operations on the
ciphertexts to successfully have an FHE scheme.

After Gentry’s original scheme, some of the follow-up works tried to generally improve Gen-
try’s original work. In Gentry (2009), Gentry’s key generation algorithm is used for a particular
purpose only and the generation of an ideal lattice with a “good” basis is left without a solution.
Gentry introduced a new KeyGen algorithm in Gentry (2010) and improved the security of the
hardness assumption of SSSP by presenting a quantum worst-case/average-case reduction. How-
ever, a more aggressive analysis of the security of SSSP was completed by Stehlé and Steinfeld
(2010). They also suggested a new probabilistic decryption algorithm with lower multiplicative
degree, which is the square root of the previous decryption circuit degree. Moreover, a new FHE
scheme, which was a variant of Gentry’s scheme was introduced in Smart and Vercauteren (2010).
The scheme uses smaller ciphertext and key sizes than Gentry’s scheme without sacrificing the
security. Some later works (Gentry and Halevi 2011; Scholl and Smart 2011; Ogura et al. 2010)
focused on the optimizations in the key generation algorithm in order to implement the FHE ef-
ficiently. Moreover, Mikuš proposed a new SWHE scheme with bigger plaintext space to improve
the number of homomorphic operations with a slight increase in complexity of the key generation
algorithm (Mikuš 2012).

3.3.2 FHE Schemes over Integers. In 2010, one year after Gentry’s original scheme, another
SWHE scheme was presented in Van Dijk et al. (2010), which suggests Gentry’s ingenious boot-
strapping method in order to obtain an FHE scheme. The proposed scheme is over integers and
the hardness of the scheme is based on the Approximate-Greatest Common Divisor (AGCD) prob-
lems (Galbraith et al. 2016). AGCD problems try to recover p from the given set of xi = pqi + ri .
The primary motivation behind the scheme is its conceptual simplicity. A symmetric version of
the scheme is probably one of the simplest schemes. The proposed symmetric SWHE scheme is
described as follows:

—KeyGen Algorithm: For the given security parameter λ, a random odd integer p of bit length
η is generated.

—Encryption Algorithm: For random large prime numbers p and q, choose a small number
r << p. Then, the message m ∈ {0, 1} is encrypted by

c = E (m) =m + 2r + pq, (28)

where p is kept hidden as a private key and c is the ciphertext.
—Decryption Algorithm: The ciphertext can be decrypted as follows:

m = D (c ) = (c mod p) mod 2. (29)

Decryption works properly only ifm + 2r < p/2. This actually restricts the depth of the ho-
momorphic operations performed on the ciphertext. Then, Dijk et al. used Gentry’s squash-
ing and bootstrapping techniques to make the scheme fully homomorphic. The homomor-
phic properties of the scheme can be shown easily as follows:

—Homomorphism over Addition:

E (m1) + E (m2) =m1 + 2r1 + pq1 +m2 + 2r2 + pq2 = (m1 +m2) + 2(r1 + r2) + (q1 + q2)q. (30)
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The output clearly falls within the ciphertext space and can be decrypted if the noise |m1 +

2r1 +m2 + 2r2 | < p/2, where p is the private key. Since r1, r2 << p, a various number of
additions can still be performed on ciphertext before noise exceeds p/2.

—Homomorphism over Multiplication:

E (m1)E (m2) = (m1 + 2r1 + pq1) (m2 + 2r2 + pq2 =m1m2 + 2(m1r2 +m2r1 + 2r1r2) + kp. (31)

The output preserves the format of original ciphertexts and holds the homomorphic prop-
erty. The encrypted data can be decrypted if the noise is smaller than half of the private
key, i.e., |m1m2 + 2(m1r2 +m2r1 + 2r1r2) | < p/2. The noise grows exponentially with the
multiplication operation. This puts more restriction over the homomorphic multiplication
operation than addition.

In fact, the scheme presented so far (Van Dijk et al. 2010) was the symmetric version of the
homomorphic encryption. Transforming the underlying symmetric HE scheme into an asymmetric
HE scheme is also presented in Van Dijk et al. (2010). It is enough to compute many “encryptions
of zero,” xi = pqi + 2ri , where p is the private key. Then, many xi s are shared as the public key.
To encrypt the message with the public key, it is enough to add the message to a subset sum of
xis . The same decryption is used to decrypt the ciphertext. As there is no efficient algorithm to
recover p from the given xi s in polynomial time, the scheme is considered secure. The scheme is
now basically a public key encryption scheme, since it uses different keys to encrypt and decrypt.

The FHE scheme proposed in Van Dijk et al. (2010) is conceptually very simple. However, this
simplicity comes at a cost in computations. So the scheme is not very efficient. Hence, some
early attempts directly tried to improve the efficiency. For example, some follow-up optimiza-
tions focused on reducing the size of public keys (Coron et al. 2011) (O (λ10) → O (λ7)), Coron et al.
(2012) (O (λ7) → O (λ5), Yang et al. (2012) (O (λ5) → O (λ3). A more efficient public key generation
(Ramaiah and Kumari 2012b) and re-encryption (Chen et al. 2014) are other suggested works with-
out reducing the security of the scheme. Later, an important variant, which is batch FHE over
integers, was proposed (Cheon et al. 2013) (merged version of Coron et al. (2013) and Kim et al.
(2013)). Batch FHE has the ability to pack multiple ciphertexts into a single ciphertext. Moreover,
the proposed scheme provides two options for the hardness of the base problem: Decisional AGCD
and Error-free AGCD. Cheon et al. (2013) also show how to achieve the recryption operation in
parallel l-slots.

Some further approaches for FHE schemes over integers are also proposed: a new scale-
invariant FHE over integers (Coron et al. 2014), a new scheme with integer plaintexts (Ramaiah and
Kumari 2012a), a new SWHE scheme for computing arithmetic operations on large integer num-
bers without converting them into bits (Pisa et al. 2012), a new symmetric FHE without bootstrap-
ping (Aggarwal et al. 2014), and a new FHE for nonbinary message spaces (Nuida and Kurosawa
2015). All these schemes improved FHEs over integers in the way that their names imply.

3.3.3 LWE-Based FHE Schemes. Learning with Error (LWE) is considered one of the hardest
problems to solve in practical time for even postquantum algorithms. First, it was introduced by
Oded Regev as an extension of the “learning from parity with error” problem (Regev 2009). Regev
reduced the hardness of worst-case lattice problems like SVP to LWE problems, which means that
if one can find an algorithm that can solve the LWE problem in an efficient time, the same algo-
rithm will also solve the SVP problem in an efficient time. Since then, it has been one of the most
attractive and promising topics for postquantum cryptology with its relatively small ciphertext
size. Lyubashevsky et al. suggested another significant improvement on the LWE problem that
may lead to new applications by introducing the ring-LWE (RLWE) problem (Lyubashevsky et al.
2013). The RLWE problem is an algebraic variant of LWE, which is more efficient for practical
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applications with strong security proofs. They proved that the RLWE problems are reducible to
worst-case problems on ideal lattices, which is hard for polynomial-time quantum algorithms.

In the LWE-based FHE schemes, an important step toward a practical FHE scheme is made in
Brakerski and Vaikuntanathan (2011). Brakerski and Vaikuntanathan established a new SWHE
scheme based on RLWE to take advantage of the efficiency feature of RLWE (Brakerski and
Vaikuntanathan 2011). In other words, although both LWE and RLWE problems can be used as
the hardness assumption of an FHE scheme, RLWE shows better performance. Then, the scheme
uses Gentry’s blueprint squashing and bootstrapping techniques to obtain an FHE scheme. They
used PLWE, which is a simplified version of RLWE. PLWE is also reducible to worst-case problems
such as SVP on ideal lattices. The schemes proposed after (Brakerski and Vaikuntanathan 2011)
are also called second-generation FHE schemes.

Below, for the sake of simplicity, as we did in the previous part, we first show a symmetric
version.

Notation: A very common notation is that 〈a,b〉 is used to denote the inner product of vectors a

and b. Moreover, d
$←− D denotes that d is randomly assigned by an element from the distribution

D and Z[x]/( f (x )) denotes the ring of all polynomials modulo f (x ). The ring of polynomials
modulo f (x ) with coefficients in Zq is denoted with Rq ≡ Zq[x]/( f (x )). Finally, χ denotes an
error distribution over the ring Rq .

The symmetric version of the underlying scheme is given as follows:

—KeyGen Algorithm: An element of the ring is chosen as a secret key from the error distri-

bution, i.e., s
$←− χ . Then, the secret key vector is described as �s = (1, s, s2, . . . , sD ) for an

integer D.

—Encryption Algorithm: After choosing a random vector a
$←− Rq

n and the noise e
$←− χ , the

messagem is encrypted by

�c = (c0, c1) = (as + te +m,−a), (32)

where �c ∈ R2
q .

—Decryption Algorithm: In order to decrypt the ciphertext to recover the message, it can be
easily computed that

m = 〈�c,�s〉 (mod t ). (33)

Decryption works properly if 〈�c,�s〉 is smaller than q/2. Furthermore, in order to make the
scheme asymmetric, it is sufficient to generate a random set of pairs (a,as + te ). Also, the
homomorphic property of the scheme is very similar to those in Gentry (2009) and Van Dijk
et al. (2010).

—Homomorphism over Addition:

E (m) + E (m′) = (c0 + c
′
0, c1 + c

′
1) = ((a + a′)s + t (e + e ′) + (m +m′),−(a + a′)). (34)

Similar to previous schemes, decryption works if the noise is small. And it is clear that
homomorphically added ciphertexts keep the format of the original ciphertexts and stay
within the ciphertext space.

—Homomorphism over Multiplication:

E (m) + E (m′) = (c0c
′
0, c1c

′
1) = (−a′s2 + (c ′0a + c0a

′)s + t (2ee ′ + em′ + e ′m) +mm′). (35)

The output seems almost like a ciphertext, but it still can be decrypted correctly with the
expense of a new cost by adding a new term to ciphertext.
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Brakerski and Vaikuntanathan made their scheme fully homomorphic using Gentry’s blueprint
squashing and bootstrapping. They also showed that their SWHE scheme is circular secure (aka
Key-Dependent message (KDM) security) with respect to linear functions of the secret key; i.e.,
the encryption can successfully keep secure linear functions of its own secret key.

After the proposed BGN-type cryptosystem based on LWE, which is additively homomorphic
and allows only one multiplication operation in Gentry et al. (2010), Brakerski and Vaikuntanathan
proposed another SWHE scheme based on standard LWE problems using a relinearization tech-
nique (Brakerski and Vaikuntanathan 2014a). Relinearization makes the long ciphertexts, which
are the output of the homomorphic evaluation, regular size. Another important contribution in
this work is the dimension-modulus reduction, which does not require an SSSP assumption and
the squashing method used in Gentry’s original framework.

As discussed earlier, Gentry’s bootstrapping method is a creative method to obtain an FHE
scheme; however, it comes with a huge cost. A leveled-FHE scheme without using the bootstrap-
ping technique was introduced by Brakerski et al. (2014). Leveled FHE can evaluate homomorphic
operations for only a predetermined circuit depth level. Brakerski et al. (2014) also showed that
their scheme with bootstrapping still provides better performance than the one without boot-
strapping and also suggested the batching as an optimization. To achieve batching, the “modulus
switching” technique is used iteratively to keep the noise size constant. Then, Brakerski removed
the necessity of modulus switching in Brakerski (2012). In Brakerski’s new scale-invariant FHE
scheme Brakerski 2012), contrary to the existing FHE schemes, the noise grows linearly with the
evaluation of homomorphic operations instead of exponentially, and the scheme is based on the
hardness of the GapSVP problem (Peikert 2015). The GapSVP problem is roughly deciding the ex-
istence of a shorter vector than the vector with length d for a given lattice basis B. The result
returns simply yes or no. Then, Fan and Vercauteren optimized Brakerski’s scheme by changing
the based assumption to an RLWE problem (Fan and Vercauteren 2012a). Some other modifica-
tions to Brakerski (2012) focused on reducing the overhead of key switching and faster evaluation
of homomorphic operations (Wu et al. 2012) and using relinearization to improve efficiency (Zhang
et al. 2014).

Recently, Gentry et al. (2013) introduced a significant FHE scheme claiming three important
properties: simpler, faster, and attribute-based FHE. The scheme is simpler and faster due to the
“approximate eigenvector” method replacing the relinearization technique. In this method, by
keeping only some parameters small, the format of the ciphertext can be preserved under the
evaluation of homomorphic operations. In the previous schemes that use the bootstrapping tech-
nique, the secret key (evaluation key) of the user is sent to the cloud to evaluate the ciphertext
homomorphically for the bootstrapping. In contrast, Gentry et al. (2013) eliminate that need and
propose the first identity-based FHE scheme, which allows homomorphic evaluation by only a tar-
get identity having the public parameters. Then, Brakerski and Vaikuntanathan followed (Gentry
et al. 2013) to construct an FHE scheme secure under a polynomial LWE assumption (Brakerski
and Vaikuntanathan 2014b). It is shown that the proposed scheme is as secure as any other lattice-
based PKE scheme. Recently, Paindavoine and Vialla showed a way of minimizing the number
of required bootstrappings based on the linear programming techniques that can be applied to
Gentry et al. (2013) as well.

In addition to more recently proposed LWE-based FHE schemes in Zhang et al. (2014), Chen
et al. (2014), Tanping et al. (2015), and Wang et al. (2015b), some optimizations focused on better
(faster) bootstrapping algorithms (Alperin-Sheriff and Peikert 2013, 2014), speeding up homomor-
phic operations (Gentry et al. 2012), and a new extension to FHE for multi-identity and multikey
usage (Clear and McGoldrick 2015). More recently, a new efficient SWHE scheme based on the
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polynomial approximate common divisor problem was presented in Cheon et al. (2016). The pre-
sented scheme in Cheon et al. (2016) can handle efficiently large message spaces.

3.3.4 NTRU-Like FHE Schemes. To obtain a practical and applicable FHE scheme, one of the
crucial steps is taken by showing the construction of an FHE scheme from NTRUEncrypt, which
is an old encryption scheme proposed by Hoffstein et al. (1998). Specifically, how to obtain a mul-
tikey FHE from the NTRUEncrypt (called NTRU) was shown by López-Alt et al. (2012). The NTRU
encryption scheme is one of the earliest attempts based on lattice problems. Compared with RSA
and GGH cryptosystems, NTRU improves the efficiency significantly in both hardware and soft-
ware implementations. However, there were security concerns for 15 years until the study done by
Stehlé and Steinfeld (2011). They reduced the security of the scheme to standard worst-case prob-
lems over ideal lattices by modifying the key generation algorithm. Since the security of the scheme
is improved, efficiency, easy implementation, and standardization issues attract researchers’ inter-
est again. At the same time, López-Alt et al. (2012) and Gentry (2012) independently noticed the
fully homomorphic properties of the NTRU encryption. López-Alt et al. used the NTRU encryp-
tion scheme to obtain a practical FHE (López-Alt et al. 2012) with three differences. First, the set
from which the noise is sampled is changed from a deterministic set to a distribution. Second, the
modification introduced in Stehlé and Steinfeld (2011), which makes the scheme more secure, is
used. Third, the parameters are chosen to allow fuly homomorphism. Their proposed NTRU-like
encryption scheme in López-Alt et al. (2012) is as follows:

—KeyGen Algorithm: For chosen sampled polynomials f ′ and д from a distribution χ (specif-
ically, a discrete Gaussian distribution), it is set f = 2f ′ + 1 to get f ≡ 1 (mod 2) and f is
invertible. Then, the secret key sk = f ∈ R and public key pk := h = 2дf −1 ∈ Rq .

—Encryption Algorithm: For chosen samples s and e from the same distribution χ , the message
m is encrypted by

c = E (m) = hs + 2e +m, (36)

where the ciphertext c ∈ Rq .
—Decryption Algorithm: The ciphertext can easily be decrypted as follows:

m = D (c ) = f c (mod 2), (37)

where f c ∈ Rq . The correctness of the scheme can be verified using h = 2дf −1 and f ≡ 1
(mod 2). Moreover, the scheme proposed by López-Alt et al. is a new type of FHE scheme,
which is called multikey FHE. Multikey FHE has the ability to evaluate on ciphertexts that
are encrypted with independent keys; i.e., each user can encrypt data with his or her own
public key and a third party can still perform a homomorphic evaluation on these cipher-
texts. The only interaction required between the users is to obtain a “joint secret key.” The
homomorphically evaluated ciphertext is decrypted by using the joint secret key, which is
obtained by using all involved secret keys. The messagemi is encrypted by using public key
hi = 2дi fi

−1 with the formula ci = hisi + 2ei +mi . The multikey homomorphism properties
for two-party computation is shown using joint secret key f1 f2.

—Multikey Homomorphism over Addition:

f1 f2 (c1 + c2) = 2( f1 f2e1 + f1 f2e2 + f2д1s1 + f1д2s2) + f1 f2 (m1 +m2)

= 2eadd + f1 f2 (m1 +m2).
(38)
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—Multikey Homomorphism over Multiplication:

f1 f2 (c1c2) = 2(2д1д2s1s2 + д1s1 f2 (2e2 +m2) + д2s2 f1 (2e1 +m1)

+ f1 f2 (e1m2 + e2m1 + 2e1e2)) + f1 f2 (m1m2)

= 2emult + f1 f2 (m1m2).

(39)

Here, it is seen that the multikey homomorphic operation increases noise more than a single
key homomorphic evaluation. However,m1 +m2 andm1m2 can still be recovered correctly
using the jointly obtained secret key since f ,д, s, e all are sampled from the bounded dis-
tribution χ . In other words, the decryption still works if each of the noise parameters eadd

and emult are smaller than |p/2|.

As observed in all of the FHE schemes presented in detail in our work, since in López-Alt et al.
(2012) noise grows with homomorphic operations on encrypted data, the proposed scheme is ac-
tually an SWHE scheme. To make it fully homomorphic, López-Alt et al. also (like all others above)
used Gentry’s bootstrapping technique. However, to apply bootstrapping, one first needs to make
the underlying SWHE scheme bootstrappable. For this reason, the first modulus reduction tech-
nique described in Brakerski (2012) and Brakerski and Vaikuntanathan (2014a) was used. Then,
the final scheme was named a leveled-FHE because it had the ability to deal with only a limited
number of public keys. Although the number of parties that can be used in homomorphic opera-
tions is limited, the complexity of the circuit that can be used in homomorphic operations is still
independent of the number of parties that can join the communication.

Another issue to be taken into account in López-Alt et al. (2012) is the assumptions. Specifically,
two assumptions are used in the scheme proposed by Lopez-Alt et al. First is RLWE problems and
second is the Decisional Small Polynomial Ratio (DSPR). Though RLWE is well studied and about
being a standard problem, the DSPR assumption is a nonstandard one. Hence, Bos et al. (2013)
showed how to modify (López-Alt et al. 2012) to remove the DSRP assumption. While removing
the DSRP assumption, the tensoring technique introduced in Brakerski (2012) is used to restrict
the noise increase during homomorphic operations. However, the tensoring technique used to
avoid the DSRP assumption results in a large evaluation key and a complicated key switching
procedure, which makes the scheme impractical. A practical variant of their scheme, which rein-
troduces the DSRP assumption, is also presented in the same work. However, it was later shown
that the optimizations and parameter selection that yield a significant increase in the performance
make it vulnerable to subfield lattice attacks (Albrecht et al. 2016). The attack shown by Albrecht
et al. affected not only (Bos et al. 2013) but also every other NTRU-like scheme, which relies on
the DSRP problem and whose parameters (e.g., secret key, modulus) are chosen poorly. Finally,
in Doröz and Sunar (2016), a modified NTRU-like FHE scheme, which does not require the DSRP
assumption and thereby is secure against subfield lattice attacks, is proposed. Another attractive
feature of the new FHE scheme is that it also does not require the use of an evaluation key during
the homomorphic operations. The new scheme is based on Stehlé and Steinfeld (2011) and it uses
a flattening noise management technique adopted from the flattening technique of Gentry et al.
(2013).

Two follow-up interesting works also improved the NTRU-like FHE using different techniques.
While one of them focuses on a customized and generic bit-sliced implementation of NTRU-like
FHE schemes (Doröz et al. 2014), the other suggests the use of GPU (Dai et al. 2014). Furthermore,
in Doröz et al. (2014), the AES circuit is chosen to evaluate the homomorphic operations, which is
faster than the proposed one in Gentry et al. (2012). Other improvements on hardware implemen-
tations of NTRU-like FHE schemes are more recently published in Liu and Wu (2015) and Doröz
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Table 3. “Fully” Implemented FHE Schemes

Scheme Information Platform Parameters Running Times

Implemented
Scheme Base Scheme Software

Security
Parameter, λ

Dimension,
n PK Size KeyGen Enc Dec Recrypt

GH11 (Gentry and
Halevi 2011)

Gen09 (Gentry
2009)

C/C++ 72 33,768 2.25GB 2.2 h
3 min

(SWHE)
0.66 s

(SWHE)
31 min

CMNT11 (Coron et al.
2011)

DGHV10 (Van
Dijk et al. 2010)

Sage 4.5.3 72 7,897 802MB 43 min 2 min 57 s 0.05 s
14 min

33 s

CNT12 (with
compressed
PK) (Coron et al. 2012)

DGHV10 (Van
Dijk et al. 2010)

Sage 4.7.2 72 7,897 10.3MB 10 min 7 min 15 s 0.05 s
11 min

34 s

CNT12
(leveled) (Coron et al.
2012)

DGHV10 (Van
Dijk et al. 2010)

Sage 4.7.2 72 5,700 18MB
6 min
18 s

3.4 s 0.00 s
2 h

27 min

et al. (2015b). Another NTRU-like FHE scheme was suggested in Rohloff and Cousins (2014). They
used the bootstrapping proposed in Alperin-Sheriff and Peikert (2013) and “double-CRT” proposed
in Gentry et al. (2012) to modify the representation of the ciphertexts in a more efficient way.

4 IMPLEMENTATIONS OF SWHE AND FHE SCHEMES

The ultimate goal with different HE schemes is to obtain an unbounded and practical FHE scheme.
PHE schemes and SWHE schemes proposed before Gentry’s breakthrough work in 2009 were
stepping stones toward that goal. Nonetheless, they are restricted in terms of the areas that can
be applied. However, the SWHE schemes proposed after Gentry’s work are mostly the part of the
FHE schemes rather than a different scheme. Moreover, a bounded (level) FHE can also be called
a SWHE scheme. Hence, it is not possible to separate SWHE and FHE schemes for the works
proposed after Gentry’s work. In this section, we summarize the implementations of the SWHE
and FHE schemes, which can lead to the new works and speed up the follow-up works, proposed
after Gentry’s work.

Implementation of a cryptographic scheme is the middle step between designing the scheme
and applying it to a real-life service, and it provides a realistic performance assessment of the
designed scheme. Although some new proposed FHE schemes have increased the efficiency and
performance of the implementations significantly, the overhead and cost of the FHE implemen-
tations are still too high to be applied transparently in a real-life service without disturbing the
user.

4.0.1 “Fully” Implemented FHE Schemes. After solving the long-term open problem of design-
ing a fully homomorphic scheme (Gentry 2009), many new fully homomorphic scheme proposals
were tested with implementations. In a very first attempt, Smart and Vercauteren (2010) imple-
mented a variant of Gentry’s original scheme. However, their key generation takes hours up to
N = 211, where N is the lattice dimension and does not generate the key pairs after N = 211. More
importantly, their implementation did not include the bootstrapping procedure. Hence, it is ac-
tually an SWHE scheme as it was implemented. Then, Gentry and Halevi (2011) succeeded in
implementing the FHE scheme the first time by continuing the way that Smart and Vercauteren
(2010) had started. The running times for the implementation in 23 and other proposed FHE imple-
mentations that are evaluated over random-depth circuits are given in Table 3. Moreover, Gentry
and Halevi (2011) introduced some optimizations and simplifications on the squashing process to
obtain a bootstrappable scheme. In their implementation, they showed four security levels: toy,
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Table 4. FHE Implementations for “Low-Depth” Circuits

Scheme Information Platform Parameters Running Times

Implemented
Scheme Base Scheme Software Enc Dec Mult Add

NLV11 (Naehrig
et al. 2011)

BV11 (Brakerski and
Vaikuntanathan 2011)

Magma w = 232 q=127 756ms 57ms 1,590ms 4ms

YASHE (by
BLLN13 (Bos et al.
2013))

LTV12 (López-Alt et
al. 2012)

C/C++ t = 210 q=130 27ms 5ms 31ms
0.024ms

YASHE (by LN14a
(Lepoint and
Naehrig 2014))

LTV12 (López-Alt et
al. 2012)

C/C++ w = 232 q=130 16ms 15ms 18ms 0.7ms

FV (by LN14a
(Lepoint and
Naehrig 2014))

BV11 (Brakerski and
Vaikuntanathan 2011)

C/C++ w = 232 q=130 34ms 16ms 59ms 1.4ms

RC14 (Rohloff and
Cousins 2014)

LTV12 (López-Alt et
al. 2012)

Matlab n = 210 t=1 12ms 3.36ms 100ms 0.56ms

small, medium, and large. They suggested that the large parameter settings are practically secure,
which have a lattice dimension of 215. However, the performance of the implementation is very
inefficient in practical terms. For the large-parameter setting, a key pair was generated at 2.2 hours
and public key size was 2.25GB. Recrypting the ciphertexts (bootstrapping) took 31 minutes. Af-
ter that, in Coron et al. (2011), an integer variant of the FHE scheme introduced originally in Van
Dijk et al. (2010) was implemented. In this implementation, the key generation takes 43 minutes,
and the public key size is 802MB. The implementation showed that the same security level can
be achieved with a much simpler scheme. (The difference comes from the different definitions of
security levels.) Later, Coron et al. in a different work (Coron et al. 2012) improved public key size
to 10MB, key generation to 10 minutes, and the recryption procedure to 11 minutes and 34 sec-
onds using similar parameter settings in Coron et al. (2011). This performance is obtained using
a compression technique on the public key. In Coron et al. (2012), a leveled DGHV scheme is also
implemented with slightly worse performance. Yuanmi Chen and Phong Q. Nguyen (Chen and
Nguyen 2012) proposed an algorithm to break the scheme in Coron et al. (2012), which is faster
than exhaustive search. This work showed that the security level of the scheme proposed in Coron
et al. (2012) is much lower than the scheme proposed in Gentry and Halevi (2011).

4.0.2 FHE Implementation for “Low-Depth” Circuits. The second type of FHE implementations
tried to implement leveled-FHE schemes for small-depth circuits with given runtime for isolated
and composed addition and multiplication (Naehrig et al. 2011; Bos et al. 2013; Lepoint and Naehrig
2014; Rohloff and Cousins 2014). The comparisons for these small-depth FHE implementations are
given at Table 4. Since the performance of the state of the art was unsatisfactory, as an early at-
tempt, a relatively simpler FHE, which allows only a few homomorphic multiplication operations,
was implemented in Naehrig et al. (2011). Later, this performance was improved by Bos et al. (2013)
due to the new method to evaluate the homomorphic multiplication operation. Moreover, unlike
(Naehrig et al. 2011), in Bos et al. (2013) the underlying scheme was implemented in C program-
ming language to avoid the unwelcome overhead due to the computer algebra system. Then, a
similar performance with Bos et al. (2013) is obtained. Recently, a significant improvement was
made by using double CRT in the representation of ciphertexts and used parallelism to accelerate
the implementation in Matlab (Rohloff and Cousins 2014).

ACM Computing Surveys, Vol. 51, No. 4, Article 79. Publication date: July 2018.



79:24 A. Acar et al.

4.0.3 “Real-World” Complex FHE Implementations. In contrast to the above schemes, which
are either proof-of-concept or small-depth implementations, the authors in Gentry et al. (2012)
implemented FHE for the first time to evaluate the circuit complex enough for a real-life applica-
tion. Gentry et al. (2012) implemented a variant of the BGV scheme proposed in Brakerski et al.
(2011),8 which is a leveled FHE without bootstrapping, in order to evaluate the AES circuit homo-
morphically. Actually, the idea of homomorphic evaluation of AES was first discussed in Naehrig
et al. (2011) with the following scenario. A client first sends the key of AES by encrypting with
FHE, FHE (K ). Then, the client uploads the data by encrypting with AES only, AESK (m). When
the cloud wants to evaluate the data homomorphically, it computes FHE (AESK (m)) and decrypts
AES homomorphically (blindfold) to obtain FHE (m). After that, the cloud can compute every ho-
momorphic operation on the data encrypted with FHE. The comparison of such more complex
“real-world” FHE implementations is presented in Table 5. A realization of how to achieve SIMD
(single-instruction multiple-data) operations using homomorphic evaluation of AES is proposed
by Smart and Vercauteren (2011). Later, some works (Coron et al. 2013; Mella and Susella 2013;
Coron et al. 2014; Doröz et al. 2014) also improved the performances of the homomorphic evalua-
tion of the AES circuit by applying the recent improvements and optimizations on the theoretical
side. In addition to the use of the AES circuit to evaluate homomorphically, lightweight block ci-
phers such as Prince (Doröz et al. 2014), SIMON (Lepoint and Naehrig 2014), and LowMC (Albrecht
et al. 2015) are also proposed. Mella and Susella (2013) estimated the cost of some of the symmet-
ric cryptographic primitives such as AES-128, SHA-256 hash function, Salsa20 stream cipher, and
KECCAK sponge function. They concluded that AES is best suited for the homomorphic evalua-
tion because of its low number of rounds and absence of integer operations and logical ANDs in
its internals. However, in Mella and Susella (2013), only AES-128 is implemented.

4.0.4 Publicly Available FHE Implementations. Although all aforementioned implementations
are published in the literature, unfortunately, only a few of them are publicly available to re-
searchers. Some of the publicly available implementations are listed in Table 6. From publicly avail-
able implementations, HElib (Halevi and Shoup 2013b) is the most important and widely utilized
one. HElib implements the BGV scheme (Brakerski et al. 2011) with Smart-Vercauteren ciphertext
packing techniques and some new optimizations. The design and implementation of HElib are
documented in Halevi and Shoup (2013a), and algorithms used in HElib are documented in Halevi
and Shoup (2014). HElib is designed using low-level programming, which deals with the hard-
ware constraints and components of the computer without using the functions and commands
of a programming language and hence is defined as “assembly language for HE.” It was imple-
mented using GPL-licensed C++ library. Since December 2014, it supports bootstrapping (Halevi
and Shoup 2015), and since March 2015, it supports multithreading. In an important extension, ho-
momorphic evaluation of AES was implemented on top of HElib (Gentry et al. 2012) and included
in the HElib source code in Halevi and Shoup (2013b).

Unfortunately, the usage of HElib is not easy because of the sophistication needed for its low-
level implementation and parameter selection, which affects both performance and security level.
Another notable open-source FHE implementation is libScarab (Perl et al. 2011a). To the best of
our knowledge, libScarab (Perl et al. 2011a) is the first open-source implementation of FHE. Its
parameter selection is relatively easier than that of HElib, but it suffers from a lot of limitations.
For instance, it does not implement modern techniques (e.g., modulus reduction and relinearization
techniques (Brakerski and Vaikuntanathan 2014a)) to handle the noise level, and it also does not
support the SIMD techniques introduced in Smart and Vercauteren (2014). It implements Smart-

8Later updated in Brakerski et al. (2014).

ACM Computing Surveys, Vol. 51, No. 4, Article 79. Publication date: July 2018.



A Survey on Homomorphic Encryption Schemes: Theory and Implementation 79:25

Table 5. “Real World” Complex FHE Implementations

Scheme Platform Parameters Running Times

Implemented
Scheme Base Scheme Circuit Reported Specs λ

AND
Depth

Total
Evaluation

Time

Number of
Parallel

Enc
Relative

Time

GHS12
(original)(packed)
(Gentry et al. 2012)

BGV11
(Brakerski et al.

2011)
AES

Intel Xeon CPU @
2.0GHz with
256GB RAM

80 40 48 h 54 37 min

GHS12
(original)(byte-sliced)
(Gentry et al. 2012)

65 h 720 5 min

CLT13 (byte-wise)
(Cheon et al. 2013)

DGHV10 (Van
Dijk et al. 2010)

AES
Intel Core i7 @

3.4GHz with 32GB
RAM

72 40 18.3 h 33 33 min

CLT13 (state-wise)
(Cheon et al. 2013)

113 h 531 12 min 46 s

CLT14 (state-wise)
(Coron et al. 2014)

DGHV10 (Van
Dijk et al. 2010)

AES
Intel Xeon E5-2690

@ 2.9GHz
80 40 102 h 1875 3 min 15 s

CLT14 (state-wise)
(Coron et al. 2014)

72 3 h 35 min 569 23 s

LN14a (YASHE)
(Lepoint and Naehrig
2014)

LTV12
(López-Alt et al.

2012)
SIMON

Intel Core i7-2600
@ 3.4GHz9 128 34 1 h 10 min 2,048 2.04 s

LN14a (FV) (Lepoint
and Naehrig 2014)

Bra12 (Brakerski
2012)

3 h 27 min 2,048 6.06 s

DHS14 (Doröz et al.
2014)

LTV12
(López-Alt et al.

2012)
AES

Intel Xeon @
2.9GHz ∼80

40 31 h 2,048 55 s

DSES14 (Doröz et al.
2014)

LTV12
(López-Alt et al.

2012)
Prince

Intel Core i7
3770K @ 3.5GHz

with 32GB RAM10
130 30 57 min 1,024 3.3 s

ARSTZ15 (Albrecht et
al. 2015)

BGV11
(Brakerski et al.

2011)
LowMC

Intel Haswell
i7-4770K CPU @

3.5GHz with 16GB
RAM

80 12 8 min 600 0.8 s

GHS12 (updated)(no
bootstrapping)
(Gentry et al. 2012)

BGV11
(Brakerski et al.

2011)
AES

Intel Core
i5-3320M at 2.6GHz
with 4GB RAM11

80 40 4 min 12 s 120 2 s

GHS12
(updated)(with
bootstrapping)
(Gentry et al. 2012)

17 min 30 s 180 5.8 s

Vercauteren’s FHE scheme in Smart and Vercauteren (2010), and documentation is provided in Perl
et al. (2011b).

Another major implementation is introduced by Ducas and Micciancio and called “Fastest Ho-
momorphic Encryption in the West” (FHEW) (Ducas and Micciancio 2014). It is documented in
Ducas and Micciancio (2015). It significantly improves the time required to bootstrap the cipher-
text claiming homomorphic evaluation of a NAND gate “in less than a second.” A NAND gate is
functionally complete. Hence, any possible Boolean circuits can be built using only NAND gates.
In Ducas and Micciancio (2015), the usage of ciphertext packing and SIMD techniques provides an
amortized cost. However, in FHEW, such performance is achieved using only a few hundred lines
of code with the use of one additional library, FFTW (Frigo and Johnson 2005). Later, the homomor-
phic computation cost of any binary gate (Ducas and Micciancio 2015) is increased by a factor of 50

9With hyper-threading turned off and over-clocking (‘turbo boost) disabled.
10Only single thread is used.
11An Ubuntu 14.04 installed VM

ACM Computing Surveys, Vol. 51, No. 4, Article 79. Publication date: July 2018.



79:26 A. Acar et al.

Table 6. Some Publicly Available FHE Implementations

Name Scheme Lang Documentation Libraries

HElib BGV
C++

Yes
NTL, GMP

(Halevi and Shoup 2013b) (Brakerski et al. 2011) (Halevi and Shoup 2013a)

libScarab SV
C

Yes
GMP, FLINT,

(Perl et al. 2011a) (Smart and Vercauteren 2010) (Perl et al. 2011b) MPFR, MPIR

FHEW DM14
C++

Yes
FFTW

(Ducas and Micciancio 2014) (Ducas and Micciancio 2015) (Ducas and Micciancio 2015)

TFHE CGGI16
C++

Yes
FFTW

(Chillotti et al. 2017) (Chillotti et al. 2016) (Chillotti et al. 2016)

SEAL FV12
C++

Yes
No external

(Laine et al. 2017) (Fan and Vercauteren 2012b) (Chen et al. 2017) dependency

by making some optimizations on the bootstrapping algorithm. The main improvement is based
on the torus representation of LWE ciphertexts. This improved the cost of bootstrapping 10 times
according to the best-known bootstrapping in Ducas and Micciancio (2014). They also further im-
proved the noise propagation overhead algorithms using some approximations. Finally, they also
reduced the size of bootstrapping key from 1GB to 24MB by achieving the same security level.

More recently, another HE library called the Simple Encrypted Arithmetic Library (SEAL) (Laine
et al. 2017) was released by Microsoft. The goal of releasing this library is explained as providing
a well-documented HE library that can be easily used by both crypto experts and nonexperts
with no crypto background like practitioners in bioinformatics. The library does not have external
dependencies like others and it includes automatic parameter selection and noise estimator tools,
which makes it easier to use. Finally, the security estimates of two well-known LWE-based HE
libraries, HElib and SEAL, against dual lattice attacks were revised in Albrecht (2017). It is shown
that the parameters promising 80 bits of security actually give an estimated cost of 68 bits for
SEAL v2.0 and 62 bits for HElib. As a final note, we give the list of general-purpose HE libraries
as follows: HEAAN implementing that supports fixed-point arithmetic (Cheon et al. 2016), a GPU-
accelerated library cuHE (Dai et al. 2017), and a general lattice crypto library PALISADE (Rohloff
2017).

4.0.5 FHE Hardware Implementations and Productions. The first known usage of FHE in a pro-
duction environment is announced by Fujitsu Laboratories (2013). Their reported implementation
provides statistical calculations and biometric authentication by using FHE-based security. They
improved an FHE by batching the string bits of data. The practical testing of this FHE implementa-
tion by Fujitsu is still pending as of this writing. Although the software-only implementations are
considered promising to obtain a practical FHE implementation, there is still a substantial gap be-
tween the achieved and the targeted performance. This gap led to a new alternative research area
in hardware implementations. The hardware solutions to accelerate both FHE and SWHE schemes
mainly focused on three implementation platforms: Graphics Processing Unit (GPU), Application-
Specific Integrated Circuit (ASIC), and Field-Programmable Gate Array (FPGA) (a useful survey
of hardware implementations of homomorphic schemes can be found in Moore et al. (2014b)). Al-
though GPU is for graphical purposes, its highly parallel structure offers great promise over CPU
for efficiency. Hence, it is suggested in some studies to use GPU in order to improve the efficiency
of homomorphic evaluation (Dai et al. 2014; Wang et al. 2014, 2015; Dai et al. 2015; Lee et al. 2015).
One of the major barriers to a practical FHE is the noise growth in the homomorphic multiplica-
tion operation. This prompted researchers to find a solution that can deal with a large number of
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modular multiplications. Therefore, there are some works focusing particularly on this problem
using the customized ASICs (Doröz et al. 2013; Wang et al. 2014; Doröz et al. 2015a). In spite of the
potential of GPU and ASIC solutions, most of the proposed studies are based on the reconfigurable
hardware, specifically FPGA. FPGA platforms offer not only Fast Fourier Transform (FFT) but also
some optimization techniques such as number-theoretic transformation (NTT) and fast modular
polynomial reduction at the hardware level. Such a large and reconfigurable environment provided
by FPGAs motivates many researchers to speed up the practicality of FHE schemes (Cousins et al.
2012; Wang and Huang 2013; Cao et al. 2013; Moore et al. 2013; Chen et al. 2015; Cao et al. 2014;
Moore et al. 2014a; Cousins et al. 2014; Roy et al. 2015; Pöppelmann et al. 2015; Öztürk et al. 2015).

In conclusion, some of the SWHE implementations (leveled-FHE) (Gentry et al. 2012) get closer
to a tolerable performance. However, the bootstrapping techniques in FHE schemes need to be
improved and the cost of homomorphic multiplications should be reduced to increase the perfor-
mance.

5 FURTHER RESEARCH DIRECTIONS AND LESSONS LEARNED

Performance of any encryption scheme is evaluated with three different criteria: security, speed,
and simplicity. First, an encryption scheme must be secure so that an attacker cannot obtain any
type of information by using a reasonable amount of resources. Second, its efficiency must not
disturb the user’s comfort; i.e., it must be transparent to the users because users prefer usability
against security. Lastly, if and only if an encryption scheme is understandable by the other area
practitioners, they will implement the scheme for their applications and productions. If the exist-
ing FHE schemes are evaluated in terms of the three criteria, there is, though getting closer, still
substantial room for improvement in terms of all these criteria, especially for the speed perfor-
mance.

Even though some of the nonstandard security assumptions (e.g., SSSP12 (Lee 2011; Halevi and
Ratha 2011)) in Gentry’s original scheme are later removed, there are still some open security
issues about the FHE schemes. The first one is the circular security of FHE. Circular security (aka
KDM security), as mentioned earlier, keeps its own secret key secure by encrypting it with the
public key. All known FHE schemes use Gentry’s blueprint bootstrapping technique to obtain an
unlimited FHE scheme. So the encryption of the secret key is also sent to the cloud to bootstrap the
noisy ciphertexts, and an eavesdropper can capture the encryption of the secret key. Even though
some SWHE and leveled-FHE schemes are proven as semantically secure, an unbounded FHE still
has not been proven as semantically secure with respect to any function, so it does not guarantee
that an adversary cannot reveal the secret key from its encryption under the public key. This
unfortunate situation is still open to be proven. Moreover, although some SWHE schemes (Loftus
et al. 2011) are proven as indistinguishable under a nonadaptive chosen ciphertext attack (IND-
CCA1), none of the unbounded FHE schemes is IND-CCA1 secure for now. (IND-CCA2 (adaptive)
is not applicable to FHE because FHE itself requires it to be malleable.) In brief, FHE still needs to
be studied extensively to prove that it is secure enough.

FHE allows an unlimited number of functions on encrypted data. However, limitations on the
efficiency of the FHE schemes prompt researchers to find the SWHE schemes that can be good
enough to use in real-life applications. Recently, homomorphic evaluation of one AES, which is
a highly complex and nontrivial function, was reduced to 2 seconds (Gentry et al. 2012), and re-
searchers are now focusing to improve this instead of trying to implement an FHE scheme, which
is extremely slow for now.

12Indeed, Moon Sung Lee showed that it is quite probable that SSSP challenges can be solved within 2 days (Lee 2011;

Halevi and Ratha 2011).
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The main process that increases the computational cost in FHE is the bootstrapping process. An
unbounded FHE scheme that allows unlimited operations without bootstrapping is still an open
problem. Indeed, the bootstrapping is necessary to decrease the noise in the evaluated ciphertexts.
Hence, though a framework was suggested in Nuida (2014), the design of a noise-free FHE scheme
is also one of the open problems. A noise-free FHE (Liu 2015) and an FHE without bootstrapping
Yagisawa (2015) are reported as insecure in Wang Wang (2015).

Showing the existence of FHE instilled hope to solve other long-waiting problems (applications)
such as Functional Encryption (FE) (i.e., Identity-based encryption (IBE) and Attribute-based en-
cryption (ABE)). Functional encryption basically controls the access over data while allowing com-
putation on it according to the features of identity or attribute. The purpose of designing ABE or
IBE based on FHE is to take advantage of the functionality of two worlds. However, for now, there
exist only a few proposed schemes (Gentry et al. 2013; Clear and McGoldrick 2014, 2016; Wang
et al. 2015a). Another fruitful application of FHE is multiparty computation (MPC), which allows
the computation of the function with multiple inputs from different users while keeping the inputs
hidden. Even though there exist a few FHE-based MPC protocols (Damgård et al. 2012; López-Alt
et al. 2012; Choudhury et al. 2013; Damgård et al. 2016) proposing these powerful and useful tools,
unfortunately, their performances are not yet comparable with the conventional MPC approaches
(Mood et al. 2014; Carter et al. 2013; Premnath and Haas 2014; Carter et al. 2015) because of the
computational cost of the existing FHE schemes. However, FHE does not require any interaction,
which reduces the complexity of the communication protocol significantly. However, there are
still some gaps on how to realize those protocols. Furthermore, FHE itself cannot perform a homo-
morphic evaluation on independently encrypted data, i.e., multikey FHE. Some primitive result to
deal with this issue was presented in López-Alt et al. (2012). However, the proposed scheme can
only handle a bounded number of users. When the cloud and number of connected devices are
considered, the restriction may not be feasible. Hence, a multikey FHE with an unlimited number
of users is another promising direction for future applications.

6 CONCLUSION

In today’s always-on, Internet-centric world, the privacy of data plays a more significant role than
ever before. For highly sensitive systems such as online retail and e-banking, it is crucial to protect
users’ accounts and assets from malicious third parties. Nonetheless, today’s norm is to encrypt
the data and share the keys with the service provider, cloud operator, and so forth. In this model,
control over the privacy of the sensitive data is lost. The users or service providers with the key
have exclusive rights on the data. Untrusted providers and cloud operators can keep sensitive data
and its identifying credentials of users long after the user ends the relationship with the services.
One promising direction to preserve the privacy of the data is to utilize homomorphic encryption
(HE) schemes. HE is a special kind of encryption scheme, which allows any third party to operate
on the encrypted data without decrypting it in advance. Indeed, the idea of HE has been around
for over 30 years; however, the first plausible and achievable Fully Homomorphic Encryption (FHE)
scheme was introduced by Craig Gentry in 2009. Since then, different FHE schemes demonstrated
that FHE still needs to be improved significantly to be practical on every platform as they are very
expensive for real-life applications. Hence, in this article, we surveyed the HE and FHE schemes.
Specifically, starting from the basics of HE, the details of the well-known Partially HE (PHE) and
Somewhat HE (SWHE), which are important pillars of achieving FHE, were presented. Then, after
classifying FHE schemes in the literature under four different categories, we presented the major
FHE schemes with this classification. Moreover, we articulated the implementations and the new
improvements in Gentry-type FHE schemes. Finally, we discussed promising research directions
as well as lessons learned for interested researchers.
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